Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical and electrical characteristics of Mn-doped InN grown by plasma-assisted molecular beam epitaxy : Indium Nitride and Related Alloys

Identifieur interne : 001770 ( Main/Repository ); précédent : 001769; suivant : 001771

Optical and electrical characteristics of Mn-doped InN grown by plasma-assisted molecular beam epitaxy : Indium Nitride and Related Alloys

Auteurs : RBID : Pascal:12-0043525

Descripteurs français

English descriptors

Abstract

With the material quality of undoped indium nitride significantly improved, attention has more recently turned towards achieving control of the electrical properties of this infrared bandgap semiconductor. Of the candidate acceptors, only Mg has been reported in detail, primarily as it is the acceptor of choice for GaN and GaInN. There are several other possibilities, however, which may be worth considering. In this paper, we describe the in situ doping of InN using Mn in a plasma-assisted molecular beam epitaxy process. Evidence of surfactant behaviour is observed in both in situ reflection high-enegy electron diffraction (RHEED) and ex situ scanning electron microscopy (SEM). Although electrical measurements are difficult to interpret due to the presence of an electron accumulation layer on the surface, photoluminescence (PL) measurements reveal a number of low-energy features previously unreported in this material, and may be correlated to Mn forming a deep acceptor.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0043525

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical and electrical characteristics of Mn-doped InN grown by plasma-assisted molecular beam epitaxy : Indium Nitride and Related Alloys</title>
<author>
<name sortKey="Chai, Jessica H" uniqKey="Chai J">Jessica H. Chai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Canterbury</s1>
<s2>Christchurch 8140</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch 8140</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Young Wook" uniqKey="Song Y">Young-Wook Song</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of Canterbury</s1>
<s2>Christchurch 8140</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch 8140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Roger J" uniqKey="Reeves R">Roger J. Reeves</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of Canterbury</s1>
<s2>Christchurch 8140</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch 8140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Durbin, Steven M" uniqKey="Durbin S">Steven M. Durbin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Electrical Engineering and Department of Physics, University at Buffalo</s1>
<s2>Buffalo, NY 14260</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Buffalo, NY 14260</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0043525</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0043525 INIST</idno>
<idno type="RBID">Pascal:12-0043525</idno>
<idno type="wicri:Area/Main/Corpus">002385</idno>
<idno type="wicri:Area/Main/Repository">001770</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptor center</term>
<term>Accumulation layers</term>
<term>Carrier density</term>
<term>Carrier mobility</term>
<term>Electron delocalization</term>
<term>Energy gap</term>
<term>Hall effect</term>
<term>Indium nitride</term>
<term>Manganese additions</term>
<term>Molecular beam epitaxy</term>
<term>Optical constants</term>
<term>Photoluminescence</term>
<term>RHEED</term>
<term>Scanning electron microscopy</term>
<term>Semiconductor materials</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Constante optique</term>
<term>Addition manganèse</term>
<term>Epitaxie jet moléculaire</term>
<term>Effet Hall</term>
<term>Bande interdite</term>
<term>Centre accepteur</term>
<term>Délocalisation électronique</term>
<term>Mobilité porteur charge</term>
<term>RHEED</term>
<term>Microscopie électronique balayage</term>
<term>Couche accumulation</term>
<term>Photoluminescence</term>
<term>Densité porteur charge</term>
<term>Nitrure d'indium</term>
<term>Semiconducteur</term>
<term>InN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With the material quality of undoped indium nitride significantly improved, attention has more recently turned towards achieving control of the electrical properties of this infrared bandgap semiconductor. Of the candidate acceptors, only Mg has been reported in detail, primarily as it is the acceptor of choice for GaN and GaInN. There are several other possibilities, however, which may be worth considering. In this paper, we describe the in situ doping of InN using Mn in a plasma-assisted molecular beam epitaxy process. Evidence of surfactant behaviour is observed in both in situ reflection high-enegy electron diffraction (RHEED) and ex situ scanning electron microscopy (SEM). Although electrical measurements are difficult to interpret due to the presence of an electron accumulation layer on the surface, photoluminescence (PL) measurements reveal a number of low-energy features previously unreported in this material, and may be correlated to Mn forming a deep acceptor.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>209</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical and electrical characteristics of Mn-doped InN grown by plasma-assisted molecular beam epitaxy : Indium Nitride and Related Alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHAI (Jessica H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SONG (Young-Wook)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>REEVES (Roger J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DURBIN (Steven M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Canterbury</s1>
<s2>Christchurch 8140</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, University of Canterbury</s1>
<s2>Christchurch 8140</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Electrical Engineering and Department of Physics, University at Buffalo</s1>
<s2>Buffalo, NY 14260</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>95-99</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000505973280180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0043525</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>With the material quality of undoped indium nitride significantly improved, attention has more recently turned towards achieving control of the electrical properties of this infrared bandgap semiconductor. Of the candidate acceptors, only Mg has been reported in detail, primarily as it is the acceptor of choice for GaN and GaInN. There are several other possibilities, however, which may be worth considering. In this paper, we describe the in situ doping of InN using Mn in a plasma-assisted molecular beam epitaxy process. Evidence of surfactant behaviour is observed in both in situ reflection high-enegy electron diffraction (RHEED) and ex situ scanning electron microscopy (SEM). Although electrical measurements are difficult to interpret due to the presence of an electron accumulation layer on the surface, photoluminescence (PL) measurements reveal a number of low-energy features previously unreported in this material, and may be correlated to Mn forming a deep acceptor.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Constante optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical constants</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition manganèse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Manganese additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Centre accepteur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Acceptor center</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Centro aceptor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Délocalisation électronique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electron delocalization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Deslocalización electrónica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>RHEED</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>RHEED</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche accumulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Accumulation layers</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>023</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001770 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001770 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0043525
   |texte=   Optical and electrical characteristics of Mn-doped InN grown by plasma-assisted molecular beam epitaxy : Indium Nitride and Related Alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024